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ABSTRACT: A probabilistic study was carried out to excess the effect of uncertainty in internal friction angle of a 
cohesionless soil on the bearing capacity of a strip footing. Bearing capacity equation based on limit equilibrium 
method was used in conjunction with Monte Carlo method to determine the probability distributions of the bearing 
capacities. Probabilistic study results are shown in term of the distributions of normalized bearing capacity and natural 
logarithmic of normalized bearing capacity, characterized by their means and standard deviations. These means and 
standard deviations can be used to calculate probability of bearing capacity failure.  
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1. Introduction 
Classical bearing capacity equations based on limit 
equilibrium method, such as the Terzaghi and Meyerhof 
equations, are traditionally used in calculating bearing 
capacity of strip footing on a cohesionless soil. In footing 
design, deterministic soil properties (e.g., average or 
lowest values of soil friction angle and soil unit weight) 
are used with conventional factors of safety [1]. Factors 
of safety are normally selected empirically, i.e., based on 
past experience or experience with similar engineering 
structures [2]. Practically, factors of safety have been 
used in limit equilibrium design to compensate for 
uncertainties in loads and resistances. Uncertainty in 
bearing capacity of strip footing may cause by 
uncertainties in soil properties due to sampling 
techniques, laboratory test conditions, selection of design 
parameters from limited samples and laboratory test 
results, and spatial variability of soil in the field [3]. 

Uncertainty in bearing capacity of strip footing on a 
cohesionless soil can be explicitly described in term of 
the probability distribution, if soil properties are 
statistically assumed to be normally distributed and can 
be modeled using probability density function (pdf) 
characterized by their means and standard deviations. 
The distribution of the bearing capacity along with its 
mean and standard deviation can be obtained using a 
probabilistic method.  

In this paper, probabilistic study was conducted to 
determine the distributions of bearing capacities of a strip 
footing on a cohesionless soil using Monte Carlo method. 
Attempts were made to determine the relationships 
between mean and standard deviation of internal friction 
angle of soil and means and standard deviations of 

bearing capacities that can be used to compute the 
probability of bearing capacity failure of a footing. In 
addition, an example is used to illustrate the probability 
of bearing capacity failure and its corresponding factor of 
safety.   

 
2. Bearing Capacity Model 
A general form of bearing capacity equation for strip 
footing can be expressed as   
 

γγ++= BN
2
1qNcNq qcult    (1) 

 
where qult = the ultimate bearing capacity of the strip 
footing, c = cohesion, q = surcharge, γ = unit weight of 
the soil, B = width of the footing, and Nc, Nq, and Nγ are 
the bearing capacity factors and can be expressed as     
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where φ = internal friction angle of the soil. 

 
For a strip footing on cohesionless soil without 

surcharge, Eq. 1 can be rewritten as 
 

γγ= BN
2
1qult      (3) 



 
Assuming that the cohesionless soil is homogeneous 

within the width and depth of footing, the qult in Eq. 3 can 
be normalized by the unit weight of the soil and the width 
of the footing. Thus, dimensionless normalized bearing 
capacity (qN) can be expressed as 
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3. Probabilistic Study 
The process of probabilistic analysis of any engineering 
quantities (e.g., normalized bearing capacity of strip 
footing on cohesionless soil) is shown conceptually in 
Fig. 1. An engineering quantity is calculated using input 
parameters (e.g., an internal friction angle) treated as 
random variables that describe their uncertainties. Rather 
than a single deterministic value for each input 
parameter, a probability distribution is used to describe 
the range of possible input values along with its 
probability of occurrence. When an analysis model (e.g., 
bearing capacity model) that relates the input parameters 
to an engineering quantity is used (i.e., Eq. 4), the result 
is a probability distribution of the engineering quantity 
[2]. A numerical method such as Monte Carlo method 
can be used to obtain the distribution of the engineering 
quantity. 
 

 
Fig. 1. Schematic of Probabilistic Analysis 

 
Monte Carlo simulation is a statistical tool where the 

outcome of an event is repeatedly predicted for randomly 
drawn sets of inputs. The objective of Monte Carlo 
simulation is to perform enough realizations of a problem 
such that a probability distribution of the outcomes can 
be constructed.  Numerous samples are taken from 
probability distribution of the inputs and combined via a 
model, into a probability distribution of outcome [4].  

In this study, to be able to perform Monte Carlo 
simulation, a random number generator was employed to 
generate realizations of the internal friction angle from its 
probability distribution. Only the internal friction angle 

of a cohesionless soil is treated as a random variable. The 
distribution of the internal friction angle is assumed to be 
normal parameterized by µφ and COVφ as shown by 
others [7, 8, and 9].  

 
3.1 Generating Realizations of φ  
The process of generating a realization of φ consists of 
three main steps; 1) generating uniform random numbers, 
2) calculating normal random numbers using uniform 
random numbers just obtained, and 3) calculating a 
realization of φ using normal random numbers.  

A very-long-cycle random number generator routine 
proposed by Wichmann and Hill [5] was used to generate 
uniform random numbers having uniform distribution 
characterized by its minimum of 0 and its maximum of 1. 

Normal random numbers with mean zero and unit 
standard deviation were generated from two sets of 
uniform random numbers using method of Box and 
Muller [6]. From two sets of uniform random numbers 
obtained from the Wichmann and Hill routine, U1 and U2, 
the normal random numbers, X1 and X2 can be computed 
as follows: 

 
( ) ( )121 Uln2U2cosX −π=    (5) 

( ) ( )122 Uln2U2sinX −π=    (6) 
 

If only one normal random number is desired, the Box 
and Muller routine was modified to return a composite 
normal random number, Xc(0,1):  
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Each realization of internal friction angle (φi) was 

computed from composite normal random number (Xc,i) 
and mean friction angle (µφ) and standard deviation of 
friction angle (σφ) as:  
 

φφ σ+µ=φ i,ci X      (8) 
 
Eq. 8 can be written in term of coefficient of variation of 
internal friction angle (COVφ) as:  

  
( )φφ +µ=φ COVX1 i,ci     (9) 

 
 
3.2 Monte Carlo Simulations 

Monte Carlo simulations were performed to determine 
the probability distributions of normalized bearing 
capacity of strip footing on cohesionless soil. As shown 
by several researchers [4, 7, 8, and 9], the ranges of µφ 
and COVφ of natural cohesion soils of 25° to 45° and 5% 
to 20%, respectively, were used. In each simulation, Eq. 
9 was used to generate φi and Eq. 4 was used to calculate 
qN. This process was conducted repeatedly until enough 
realizations of qN were obtained. It was found that the 
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number of realizations of 10,000 is appropriate for 
obtaining the probability distributions of qN along with its 
mean and standard deviation.  

 
4. Results and Discussions 
4.1 Distributions of φ, qN, and ln qN 
To verify that the generated internal friction angles are 
normally distributed, a histogram of friction angle 
generated using µφ of 30° and COVφ of 10% is shown in 
Fig. 2a. It is seen that the generated friction angles are 
normally distributed as a probability density function 
(pdf) fit to the simulated friction angles is normal (Fig. 
2a). Statistical analysis also shows that the average and 
coefficient of variation of the generated friction angles 
are 29.99° and 9.99%, which confirms the validity of 
using random number generators described in this paper 
in Monte Carlo simulation. 

 

Fig. 2.  Histograms Obtained from Monte Carlo Simulations 
using of µφ of 30° and COVφ of 10%; a) φ, b) qN, and 
c) ln qN. 

 

The histogram of qN is shown in Fig. 2b. Statistically 
analysis result shows that the distribution of qN is 
lognormally distributed with mean of 8.09 and standard 
deviation of 9.49. This is not a surprising result because 
of the fact that in the process of calculating qN, 
exponential function is used when computing Nq (Eq. 2). 
When taking exponential of normal variables, the 
resulting variables tend to be lognormally distributed. 

The distribution of qN can be used to calculate the 
probability of failure of the strip footing if the load on the 
footing is known. However, to use the lognormally 
distributed parameter is more complicated than using the 
normally distributed parameter. Moreover, most 
engineers are more familiar to normal than lognormal 
distribution. Thus, it is more convenient for most 
engineers if natural logarithmic of normalized bearing 
capacity (ln qN), which is normally distributed, is used 
instead of qN. 

The distribution of ln qN was obtained by conducting 
Monte Carlo simulation using the same process used 
when obtaining the distribution of qN but ln qN which was 
obtained by taking natural logarithmic on the right side of 
Eq. 4 was used instead of qN.  

The histogram of ln qN is shown in Fig. 2c. The pdf fit 
to simulation results clearly shown that ln qN is normally 
distributed with mean of 2.06 and standard deviation of 
0.51. 
 
4.2 Relationships between µln qN, σln qN, and µφ   
The relationships between the mean of natural 
logarithmic of normalized bearing capacity of a strip 
footing on cohesionless soil (µln qN) and µφ are shown in 
Fig. 3. Data in Fig. 3 were obtained by conducting Monte 
Carlo simulations with sets of µφ and COVφ. The µφ used 
ranges from 25° to 45°, which practically represents the 
typical cohesionless soils. The COVφ used ranges from 
0% (no uncertainty) to 20% (relatively high uncertainty). 

 
Fig. 3. Relationships between µln qN and µφ 

 
 
As seen in Fig. 3 that µln qN linearly increases with 

increasing µφ  regardless of the values of COVφ. The 
linear relationship that relates µφ  to µln qN with a 
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coefficient of determination (R2) of 0.998 is expressed in 
Eq. (10). 
 

402.3183.0qNln −µ=µ φ    (10) 
 

Along the µln qN, the standard deviations of natural 
logarithmic of normalized bearing capacity of a strip 
footing on cohesionless soil (σln qN) were also obtained 
from the simulations. The relationships between σln qN 
and µφ are shown in Fig. 4. As expected, the σln qN 
increases with increasing µφ and COVφ. As µφ and COVφ 
increase, realizations of φι have more likelihood of 
having extremely high and extremely low value that 
widen the tail of the distribution (e.g., Fig. 2a) resulting 
in expanding of the distribution of the ln qN (e.g., Fig. 2c) 
and higher value of σln qN.  

 
Fig. 4. Relationships between σln qN and µφ 

  
4.3 Calculation of Probability of Failure 
Uncertainty of the stability of the strip footing can be 
formally quantified using probability of bearing capacity 
failure (Pf). Pf is defined by the probability that qult of the 
soil underneath the footing is less than the loading 
pressure (p) which can be expressed as 
 

[ ]pqPP ultf <=      (11) 
 
or it can be expressed in term of ln qN as 
 

( )NNf plnqlnPP <=     (12) 

where pN = normalized loading pressure  = 
B
p
γ

   

 
Pf can be computed using the procedure demonstrated 
here. Suppose an engineer would like to calculate the Pf 
of a 2-m width strip footing located on a cohesionless soil 
having µφ of 33°, COVφ of 10%, and γ of 18 kN/m3. A 
loading pressure on the footing is 130 kN/m2, which 
yields corresponding ln pN of 1.28. From the given 
information, µln qN and σln qN for µφ of 2.64 and 0.58, 
respectively, were obtained using Eq. 10 and Fig. 4. Eq. 
12 was then used to compute Pf using statistical table of 

normal distribution provided in any statistics books or 
using any spreadsheet programs. The computed Pf is 
0.01.  

To be able to compare the probabilistic approach to 
deterministic (traditional) approach, a factor of safety 
(FS) for the bearing capacity was calculated. The FS is 
defined by ratio of qult to p (i.e., FS = qult/p). Using the 
soil and footing properties given, the qult computed using 
Eq. 3 is 471 kN/m2, while p is 130 kN/m2. Thus, the 
corresponding FS that yields Pf of 0.01 is 3.62.  

 
5. Conclusions 

Uncertainty of the internal friction angle results in 
uncertainty of the calculated bearing capacity of a strip 
footing on a cohesionlesss soil. The uncertainty of 
bearing capacity was numerically quantified using Monte 
Carlo method and shown in term of the distribution of 
natural logarithmic of normalized bearing capacity. This 
distribution was found to be normal and can be 
characterized by its mean and standard deviation. The 
mean and standard deviation of natural logarithmic of 
normalized bearing capacity can be easily computed 
using charts that were developed from results of series of 
simulations. In addition, the mean of the natural 
logarithmic of normalized bearing capacity is linearly 
related to the mean of internal friction angle. Probability 
of bearing capacity failure can be computed if the soil 
and footing properties and loading pressure are known. 
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